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ABSTRACT V-PYRRO/NO is awell-studied nitric oxide (NO)prodrug that has been
shown to protect human liver cells from arsenic, acetaminophen, and other toxic
assaults in vivo. Its proline-based analogue, V-PROLI/NO, was designed to be a
more biocompatible form that decomposes to the naturally occurring metabolites
of proline, NO, and glycolaldehyde. Like V-PYRRO/NO, this cytochrome P450-
activated prodrugwas previously assumed to passively diffuse through the cellular
membrane. Using 14C-labeled proline in a competition assay, we show that
V-PROLI/NO is transported through proline transporters into multiple cell lines.
A fluorescent NO-sensitive dye (DAF-FM diacetate) and nitrite excretion indicated
elevated intracellular NO release aftermetabolismoverV-PYRRO/NO. These results
also allowedus topredict and design amorepermeable analogue, V-SARCO/NO.We
report a proline transporter-based strategy for the selective transport of NO
prodrugs that may have enhanced efficacy and aid in the development of further
NO prodrugs with increased permeability.
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Site-directed delivery of therapeutic nitric oxide (NO) is
challenging.1-8 Among the numerous approaches, dia-
zeniumdiolate-based NO prodrugs have shown pro-

mise. For example, V-PYRRO/NO (1a), a liver-selective NO
prodrug, is a hepatoprotective agent in a number of in vitro
and in vivo studies (Scheme 1).9-26 V-PYRRO/NO (1a) was
found to be metabolized by several cytochrome P450 (CYP)
isoforms;23 the proposedmechanism for NO release is olefin
epoxidation followed by hydrolytic cleavage to generate
PYRRO/NO (2a), a spontaneously NO-releasing diazenium-
diolate ion (Scheme 1). V-PROLI/NO (1b), a proline-based
analogue of V-PYRRO/NO, was recently reported to bemeta-
bolized by two isoforms of cytochromeP450 andwas shown
to protect human liver HepG2 cells against arsenic-induced
toxic effects (Scheme 1).27,28

The ability of these prodrugs to generate NO intracellularly
was probedusing aNO-sensitive fluorescent probe, 4-amino-
5-methylaminofluorescein diacetate (DAF-FM DA).29,30

Human liver HepG2 cells that were preloaded with DAF-FM
DAwere treated with V-PYRRO/NO (1a) or V-PROLI/NO (1b)
at various concentrations. Fluorescence measurements were
carried out 1 h post-treatment; the fluorescence values rela-
tive to DMSO-treated cells are reported.29,30 Under the assay
conditions, no significant increase in relative fluorescence at
100 μM V-PYRRO/NO (1a) was observed (Figure 1A).

However, V-PROLI/NO (1b) showed elevated fluorescence
levels relative to control not just at 100 μM, but even at 50 μM

(Figure 1A). The formation of extracellular nitrite (a product
of aerobic oxidation of NO) upon treatment of HepG2 cells
with these compounds is indicative of V-PYRRO/NO (1a) and
V-PROLI/NO (1b) metabolism to release NO. At comparable
concentrations (250 μM), V-PROLI/NO (1b) formed much
higher levels of nitrite (3 μM) in comparison with those of
V-PYRRO/NO (not detectable, <0.6 μM) after 6 h (Figure 1B).
This finding was similar with literature values.28,31

V-PROLI/NO (1b) and V-PYRRO/NO (1a) were stable in
pH 7.4 buffer at 37 �C for 7 days (see the Supporting

Scheme 1. Metabolism of NO Prodrugs V-PYRRO/NO (1a) and
V-PROLI/NO (1b) Is Proposed To Be Initiated byOlefin Epoxidation
by Cytochrome P450 Followed by Hydrolysis To Generate Diaze-
niumdiolate Anions Such as PYRRO/NO (2a) and PROLI/NO (2b),
Which Spontaneously Decompose under Physiological Condi-
tions to Generate NO
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Information) and had comparable CYP2E1-mediated meta-
bolism profiles (roughly 30% of prodrug metabolized in
1 h).23,27 Taken together, these results suggest no major
differences in decomposition profiles of V-PROLI/NO and
V-PYRRO/NO (1a).

Recently, O2-(2,4-dinitrophenyl)diazeniumdiolates with
a free carboxylic acid were reported as poor sources of
intracellular NO and showed diminished antiproliferative
activity against human leukemia HL-60 cells.32 Their carbo-
xylic acid ester prodrugs, however, were superior to their
carboxylic acid counterparts in both their ability to per-
meate cells to release NO and their antiproliferative activity.
Thus, in an attempt to improve cell permeability, 1c (Chart 1)
was prepared from V-PROLI/NO (1b) using a reported
procedure.33

Surprisingly, in the DAF-FM DA assay, 1c, the methyl ester
of V-PROLI/NO, did not show a very significant increase in
fluorescence and was comparable with the DMSO control
(see the Supporting Information). Compounds 1a, 1b, 1c,
and the prolinol derivative 1d were also included (Chart 1).
Again, we found that among the five-membered ring analo-
gues tested, V-PROLI/NO (1b) was the most active (see the
Supporting Information). Taken together, these results sug-
gest that V-PROLI/NO is a far superior source of intracellular
NO in comparison with V-PYRRO/NO and its closed ring
structural analogues prepared in this study.

Our data suggested preferential entry for V-PROLI/NO
over V-PYRRO/NO and other analogues. The literature is re-
pletewith transporters for proline and related peptides,34-39

and the affinity of several such transporters appears to be
sensitive to structural modifications.40 For example, the
proton-coupled amino acid transporter has considerably less
affinity for substrates such as pyrrolidine, proline methyl
ester, and prolinol than L-proline or even sarcosine.40 This
structure-affinity pattern (Table 1) is consistent with our
observations of cell permeability in this study.

Next, the ability of V-PROLI/NO to inhibit transport of
L-proline was evaluated using a protocol similar to that re-
ported by Metzner and co-workers.40 Under these condi-
tions, radiolabeled proline uptake was inhibited by V-PROLI/
NO at a level comparable to L-proline. V-PYRRO/NO showed
considerably less inhibition of proline uptake (Figure 1C) but
was also comparable to its amine counterpart, pyrrolidine, in
its reported inhibition of proline uptake.40

On the basis of the study by Metzner and co-workers, we
predicted that the sarcosine analogue, V-SARCO/NO (1e),33

would have a cellular penetrance comparable to that of

Figure 1. (A) Intracellular NO release in HepG2 cells asmeasured byDAF-FMDA assay. Cells that were preloadedwith DAF-FMDAdyewere
treated with DMSO (control), V-PYRRO/NO, or V-PROLI/NO at various concentrations. Fluorescence measurements were carried out after
1 h. Values reported are averages of triplicate measurements. (B) Extracellular nitrite in HepG2 cells as measured by chemiluminescence.
Cells were treated with a 250 μM concentration of the compound; nitrite levels weremeasured after 6 h. (C) L-[14C]Proline (14C-Pro) uptake.
HepG2 cells were treated with a 5 nM concentration of 14C-Pro and a 5 mM concentration of the compounds. Data were normalized to 14C-Pro
only uptake. (D) Decomposition in pH 7.4 Hank's balanced salt solution (HBSS) at 37 �C over 7 days. The decomposition profile was measured
by HPLC.

Chart 1 Table 1. Inhibition of Proline Uptake by Various Substrates40a

entry compound L-[3H]proline uptake (%)

1 control 100

2 L-proline 32

3 L-prolinol 85

4 L-proline methyl ester 63

5 pyrrolidine 82

6 sarcosine 24
aUptake of L-[3H]proline (10 nM) in CaCo-2 cells at pH 6 of various

compounds (10 mM) as reported by Metzner et al.40.
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V-PROLI/NO (1b).40 Indeed, when HepG2 and CaCo-2 cells
were independently pretreated with DAF-FMDA, exposed to
100 μM 1a-f, and examined by fluorescence after 1 h, we
observed higher fluorescence generated by V-SARCO/NO
(1e) in comparison with all other analogues tested including
the sarcosinol derivative, 1f (see the Supporting Informa-
tion). The extracellular nitrite level was also much higher in
the case of V-SARCO/NO (Figure 1B).41

Finally, proline transport inhibition by V-SARCO/NO (1e)
was somewhat diminished in comparison with V-PROLI/NO,
suggesting that V-SARCO/NO cellular uptake may not be
restricted to proline transporters (Figure 1C). The conforma-
tional flexibility of the open chain of sarcosine may allow
V-SARCO/NO (1e) to access transporters other than those
accessed by proline. Taken together, these observationsmay
provide us new modes for targeting NO. Future work will
focus on elucidating mechanisms of uptake of V-PROLI/NO
and the identity of such transporters.

EXPERIMENTAL PROCEDURES The intracellular level of NO
after diazeniumdiolate prodrug treatment was quantified using the
NO-sensitive fluorophore DAF-FM DA. Cells were loaded with 2 mL
of 2.0 μM DAF-FM DA in HBSS in each well at 37 �C and 5% CO2.
HepG2 cells were loaded in a six-well plate at 3million cells per well
and allowed to grow overnight. CaCo-2 cells were loaded in a six-
well plate at 500000 cells per well and allowed to grow overnight.
After 30 min of incubation, the cells were rinsed with HBSS to
remove excess of probe, and 3 mL of HBSS was added. The
compounds were made up in DMSO solutions and added to the
cells. After 60 min of incubation, each well was scraped to suspend
the cells and pipetted into test tubes. The fluorescence of the
benzotriazole derivative formed on DAF-FM DA's reaction with
NO was analyzed by a fluorescence spectrometer with the excita-
tion source at 495 nm and emission at 515 nm. The mean value of
two trials is reported in Tables S1 and S2 (Supporting Information).

Stock solutions (10 mM) of the compounds in DMSO were
prepared and diluted in HBSS to a final concentration of 100 μM
and incubated at 37 �C in the dark. The mean value of two trials
carried out over 7 days is reported (Table S3 in the Supporting
Information).

HepG2 cells in DMEMwere loaded with 3 mL of 250 μM prodrug
solutions. After a 6 h incubation at 37 �C and 5% CO2, the super-
natant of each well was removed to be analyzed. A procedure
provided by the manufacturer was used where 50 μL of the super-
natant was injected into a reducing solution of 1% w/v potassium
iodide solution in glacial acetic acid to convert nitrite to NO.42 The
results of two trials were averaged. Nitrite levels were interpolated
from a standard curve (Table S4 in the Supporting Information).
Various concentrations of sodium nitrite in DMEMmedia were used
as standards for the calibration experiment. All assays were per-
formed in duplicate, and data can be found in Table S5 (see the
Supporting Information).

HepG2 cells were plated in six-well plates at a density of 500000
cells perwell and cultured for 48 h. Cellswerewashed oncewith PBS
and then loadedwith 1.0mL of HBSS containing 0.8 μM 14C-labeled
L-proline (4�105 DPMmL-1)with either 5mM L-proline, V-PYRRO/
NO, V-PROLI/NO, or V-SARCO/NO. The cells were then incubated at
37 �C and 5% CO2 for 15 min. The cells were then washed three
times with ice-cold PBS and lysed in 1mL of cold RIPA buffer. A 200
μL amount from each sample was then added to 12 mL of scintilla-
tion cocktail and analyzed. All samples were performed in triplicate
(Table S6 in the Supporting Information). The disintegrations per
minute (DPM) were determined using the relationship between

counts per minute (CPM) and the scintillation counter's counting
efficiency, DPM = (CPM - CPMbackground)/counting efficiency. The
average observed backgroundwas 85 CPM. The counting efficiency
was 92.5%.

SUPPORTING INFORMATION AVAILABLE General experi-
mental methods, data for fluorescence measurements, HPLC curve
areas, nitrite determination, and radiolabeledprolineuptake. Thismate-
rial is available free of charge via the Internet at http://pubs.acs.org.
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